尺寸排阻色譜法(SEC)原理
尺寸排阻色譜法(SEC)是根據(jù)樣品中分子量的大小進(jìn)行分離純化的,大分子量的物質(zhì)由于粒徑比填料的孔徑大,不能進(jìn)入填料腔體內(nèi)部,進(jìn)而被排除在外,中分子和小分子的粒徑比填料的孔徑小,可以順利的進(jìn)入填料的腔體內(nèi)部。而大分子不能進(jìn)入填料的內(nèi)部,畢竟快速的從填料之間的狹縫空隙中流出,最先流出色譜柱。而小分子物質(zhì),進(jìn)入填料腔體,流動(dòng)的路線更長(zhǎng),最遲流出色譜柱。大小分子量進(jìn)而得到分離。
在做多糖、糖蛋白、蛋白研究過程中,流動(dòng)相多數(shù)用水配置流動(dòng)相緩沖液,使用親水柱填料分離生物大分子,將SEC命名為凝膠滲透色譜。凝膠過濾色譜可作為用以分離生物活性物質(zhì)(通常等同于在多個(gè)純化步驟中其他的色譜技術(shù))的前處理工具,或者亦可作為獲取溶質(zhì)分子信息的工具,包括分子大小或形狀、聚集狀態(tài)、生物聚合物與其配體結(jié)合的動(dòng)力學(xué)參數(shù)。在過去凝膠滲透色譜多數(shù)采用葡聚糖、瓊脂糖或者聚丙烯酰胺等軟凝膠作為填料,而這些填料只能用于低壓制備,不能承受太大的壓力。而用于分析柱上的填料,多數(shù)是硬膠填料,單分散型,粒徑小,分辨率高??梢猿惺軒渍着梁蛶资着恋膲毫Γ蚋叩膲毫?。
SEC色譜在糖分離過程的應(yīng)用
高聚多糖分子部分不能進(jìn)入親水填料的孔隙,并經(jīng)顆粒間的空隙流過,淋洗出來的順序在前;中聚多糖介于大體積分子和小分子之間;低聚寡糖和單糖體積較小的分子比凝膠顆粒的孔隙小,可以進(jìn)入凝膠顆粒的空隙,并在凝膠顆粒的孔隙以及顆粒之間的空隙不斷進(jìn)入出來擴(kuò)散,速度最慢,所以是最后被淋洗出來的。根據(jù)儀器的型號(hào),實(shí)驗(yàn)流動(dòng)相等條件,可以計(jì)算出保留時(shí)間或洗脫體積,可以根據(jù)普魯蘭標(biāo)品推測(cè)出分子量大小。分子量越大,其淋洗體積越小,保留時(shí)間越?。蛔恿吭叫∠疵擉w積越大,保留時(shí)間越長(zhǎng)。
BRT? SEC色譜柱是博睿糖推出的硅膠基質(zhì)的體積排阻系列色譜柱,其色譜填料為單分散、高純度、具有良好穩(wěn)定性的硅膠微球。硅膠的表面鍵合親水性聚合物。博睿糖采用特殊的表面修飾手段,確保了色譜柱具有良好的穩(wěn)定性和批次重現(xiàn)性。
不同規(guī)格BRT SEC固定相的特征參數(shù)(分析柱)
固定相 | SUGAR BRT-101 | SUGAR BRT-103 | SUGAR BRT-104 | SUGAR BRT-105 |
材料 | 納米親水鍵合材料 | 納米親水鍵合材料 | 納米親水鍵合材料 | 納米親水鍵合材料 |
粒徑 | 5μm | 5μm | 5μm | 5μm |
孔徑(?) | ~ 400 | ~ 600 | ~ 800 | ~ 1,000 |
直徑 | 4.6mm/7.8mm | 4.6mm/7.8mm | 4.6mm/7.8mm | 4.6mm/7.8mm |
長(zhǎng)度 | 300mm | 300mm | 300mm | 300mm |
多糖分子量范圍 | 1,000 - 24,000 | 11,000 - 280,000 | 48,000 - 410,000 | 400,000 - 5,000,000 |
pH穩(wěn)定性 | 4 - 7.5 (pH 9.0 下可以短暫使用) | 4 - 7.5 (pH 9.0 下可以短暫使用) | 4 - 8.5 (pH 9.0 下可以短暫使用) | 4 - 7.5 (pH 9.0 下可以短暫使用) |
反壓(psi, 以4.6mm I.D.×300mm計(jì)) | ~ 700 | ~ 750 | ~ 750 | ~ 750 |
耐受壓力(psi) | ~3,500 | ~ 3,000 | ~ 3,000 | ~ 3,000 |
氯化鈉 | 50mM | 50mM | 50mM | 50mM |
耐受溫度(°C) | ~ 80 | ~ 80 | ~ 80 | ~ 80 |
不同規(guī)格SUGAR BRT 固定相的特征參數(shù)(制備柱)
固定相 | SUGAR BRT-101 | SUGAR BRT-103 | SUGAR BRT-104 | SUGAR BRT-105 |
材料 | 納米親水鍵合材料 | 納米親水鍵合材料 | 納米親水鍵合材料 | 納米親水鍵合材料 |
粒徑 | 10μm | 10μm | 10μm | 10μm |
孔徑(?) | ~ 400 | ~ 600 | ~ 800 | ~ 1,000 |
直徑 | 20mm | 20mm | 20mm | 20mm |
長(zhǎng)度 | 250mm | 250mm | 250mm | 250mm |
蛋白分子量范圍 | 1,000 - 24,000 | 11,000 - 280,000 | 48,000 - 410,000 | 60,000 - 5,000,000 |
pH穩(wěn)定性 | 4 - 7.5 (pH 9.0 下可以短暫使用) | 4 - 7.5 (pH 9.0 下可以短暫使用) | 4 - 7.5 (pH 9.0 下可以短暫使用) | 4 - 7.5 (pH 9.0 下可以短暫使用) |
反壓(psi, 以4.6mm I.D.×300mm計(jì)) | ~ 700 | ~ 750 | ~ 750 | ~ 750 |
耐受壓力(psi) | ~3,500 | ~ 3,000 | ~ 3,000 | ~ 3,000 |
氯化鈉 | 50mM | 50mM | 50mM | 50mM |
耐受溫度(°C) | ~ 80 | ~ 80 | ~ 80 | ~ 80 |
Biomac SEC尺寸排阻色譜柱
Biomacro SEC尺寸排阻色譜柱 | ||||
產(chǎn)品名稱 | SEC100 | SEC300 | SEC500 | SEC-WR |
官能團(tuán) | 醇羥基 | |||
基質(zhì) | 聚羥基甲基丙烯酸酯 | |||
粒徑 | 5um | |||
孔徑 | 100? | 300? | 500? | 100-500? |
直徑 | 4.6mm,8.0mm,20mm,50mm | |||
長(zhǎng)度 | 150mm,250mm,300mm | |||
耐壓上限 | 15Mpa | |||
溫度上限 | 80°C | |||
PH范圍 | 2-12 | |||
線性范圍(葡聚糖) | 1000-10,000 | 5000-400,000 | 20000-3000,000 | 2000-3000,000 |
應(yīng)用領(lǐng)域 | 小分子化合物,低聚合物,多糖,糖蛋白,蛋白多糖,蛋白 | 小分子化合物,低聚合物,多糖,糖蛋白,蛋白多糖,蛋白 | 高分子聚合物,多糖,糖蛋白,蛋白多糖,蛋白 | 低聚合物,高聚多糖,糖蛋白,蛋白多糖,蛋白 |
寡糖系列色譜柱
寡糖色譜柱 | ||||
產(chǎn)品名稱 | BRT oligo A | |||
官能團(tuán) | 多層鍵合官能團(tuán) | |||
基質(zhì) | 硅膠 | |||
粒徑 | 8um | |||
孔徑 | 100? | |||
直徑 | 4.6mm,8.0mm,20mm,50mm | |||
長(zhǎng)度 | 150mm,250mm,300mm | |||
耐壓上限 | 15Mpa | |||
溫度上限 | 60°C | |||
PH范圍 | 2-8 | |||
線性范圍(葡聚糖) | 180-1638 | |||
應(yīng)用領(lǐng)域 | 寡糖鑒定,寡糖分離 |
SUGRA BRT 系列色譜柱 多糖分子量校準(zhǔn)曲線
多糖分子量測(cè)定中串聯(lián)色譜柱 SUGAR BRT-105-103-101 (4.6mm I.D. x 250 mm)
多糖分子量測(cè)定中串聯(lián)色譜柱 SUGAR BRT-105-103-101 (8.0 mm I.D. x 300 mm)
多糖分子量測(cè)定中串聯(lián)色譜柱 SUGAR BRT-105-103-101 (8.0 mm I.D. x 300 mm)
多糖分子量測(cè)定中3根串聯(lián)色譜柱 Biomac SEC (8.0 mm I.D. x 300 mm)x3
多糖分子量測(cè)定中2根串聯(lián)色譜柱 Biomac SEC (8.0 mm I.D. x 300 mm)x2
寡糖分析色譜柱 BRT-oligo-A (8.0 mm I.D.x 300 mm)
1mL/min, 流動(dòng)相:水, 示差檢測(cè)器
分析柱規(guī)格:
BRT? SEC色譜柱使用注意事項(xiàng):
1
分子量
可根據(jù)目標(biāo)物的分子量,來選擇合適規(guī)格的色譜柱。
2
樣品與流動(dòng)相
3
離子強(qiáng)度
色譜柱中不可避免會(huì)存在其他次級(jí)作用力,為了最大限度降低填料與被測(cè)物的次級(jí)作用力,必須調(diào)整流動(dòng)相的離子強(qiáng)度。NaCl是SEC分離中比較常用的鹽,可通過調(diào)整離子強(qiáng)度,減少次級(jí)作用力,進(jìn)而改善峰形和分離效果。
4
pH
流動(dòng)相的pH調(diào)整,更多也是為了減少色譜柱中的次級(jí)作用對(duì)被測(cè)物的影響,所以測(cè)定過程中需選擇合適的pH。為獲得最佳分離效果和延長(zhǎng)使用壽命,建議使用pH在4-7.5范圍內(nèi)的流動(dòng)相。
5
壓力
盡管BRT?SEC可在高至30Mpa 的壓力下使用,但正常的操作壓力應(yīng)當(dāng)?shù)陀?5Mpa。長(zhǎng)時(shí)間在高壓下運(yùn)行會(huì)損壞色譜柱和輸液泵。由于壓力來源于流速,因此最大流速將受制于系統(tǒng)所能承受的壓力。一般而言,柱壓會(huì)隨著色譜柱使用時(shí)間的增加而逐漸增加。
6
流速
盡量采用低流速測(cè)試,可以提高分離度,進(jìn)而獲得更好的測(cè)試效果。內(nèi)徑為4.6mm和8mm的色譜柱,一般建議其正常操作流速分別為0.1-0.4mL/min和0.1-1.5mL/min。
7
柱長(zhǎng)
通過增加色譜柱的長(zhǎng)度可以改善SEC分離度,所以在分離過程中,在一根色譜柱達(dá)不到分離效果時(shí),可以考慮兩根或三根色譜柱串聯(lián),甚至不同孔徑的色譜柱串聯(lián)(注:一般大孔徑的在前,小孔徑的在后)。這種條件下通常也會(huì)造成出峰時(shí)間延后,及系統(tǒng)壓力增加。
8
柱溫
最高操作溫度為80℃。為了獲得最長(zhǎng)的使用時(shí)間,最佳操作溫度為10-40℃。長(zhǎng)時(shí)間在高溫(>80℃)下操作也會(huì)損壞色譜柱,這種情形在高的 pH(>7.5)條件下尤其突出。
9
日常維護(hù)
隨著使用次數(shù)的增加,某些樣品可能吸附到入口篩板或填料上。當(dāng)積累到一定程度時(shí)會(huì)出現(xiàn)壓力升高,并伴隨峰形異常等現(xiàn)象。因此,日常使用過程中需要經(jīng)常注意對(duì)色譜柱進(jìn)行沖洗和維護(hù),以達(dá)到最佳的分離效果和延長(zhǎng)使用壽命,定期更換保護(hù)柱和在線過濾器。
10
保存
如果長(zhǎng)時(shí)間不使用,用超純水作為流動(dòng)相,將柱子中的氯化鈉置換出來,1ml/min沖洗1h,然后用100%乙腈作為流動(dòng)相,1ml/min沖洗1h,然后封口保存。當(dāng)再次使用時(shí),順序流動(dòng)相置換順序相反。乙腈的目的是防止色譜柱滋生細(xì)菌,延長(zhǎng)色譜柱使用壽命。
BRT? SEC色譜柱使用案例:
[1] X. Tong, C. Lao, D. Li, J. Du, J. Chen, W. Xu, L. Li, H. Ye, X. Guo, J. Li, An acetylated mannan isolated from Aloe vera induce colorectal cancer cells apoptosis via mitochondrial pathway, Carbohydr Polym 291 (2022) 119464.
[2] Y. Zhou, S. Wang, W. Feng, Z. Zhang, H. Li, Structural characterization and immunomodulatory activities of two polysaccharides from Rehmanniae Radix Praeparata, Int J Biol Macromol 186 (2021) 385-395.
[3] Y. Cao, L. Zou, W. Li, Y. Song, G. Zhao, Y. Hu, Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota, Int J Biol Macromol 163 (2020) 55-65.
[4] T. Guo, Y. Yang, M. Gao, Y. Qu, X. Guo, Y. Liu, X. Cui, C. Wang, Lepidium meyenii Walpers polysaccharide and its cationic derivative re-educate tumor-associated macrophages for synergistic tumor immunotherapy, Carbohydr Polym 250 (2020) 116904.
[5] Y. Han, K. Ouyang, J. Li, X. Liu, Q. An, M. Zhao, S. Chen, X. Li, X. Ye, Z. Zhao, L. Cai, W. Wang, Sulfated modification, characterization, immunomodulatory activities and mechanism of the polysaccharides from Cyclocarya paliurus on dendritic cells, Int J Biol Macromol 159 (2020) 108-116.
[6] S. Liu, Y. Yang, Y. Qu, X. Guo, X. Yang, X. Cui, C. Wang, Structural characterization of a novel polysaccharide from Panax notoginseng residue and its immunomodulatory activity on bone marrow dendritic cells, Int J Biol Macromol 161 (2020) 797-809.
[7] X. Xie, W. Shen, Y. Zhou, L. Ma, D. Xu, J. Ding, L. He, B. Shen, C. Zhou, Characterization of a polysaccharide from Eupolyphaga sinensis walker and its effective antitumor activity via lymphocyte activation, Int J Biol Macromol 162 (2020) 31-42.
[8] L. Xiu, S. Sheng, Z. Hu, Y. Liu, J. Li, H. Zhang, Y. Liang, R. Du, X. Wang, Exopolysaccharides from Lactobacillus kiferi as adjuvant enhanced the immuno-protective against Staphylococcus aureus infection, Int J Biol Macromol 161 (2020) 10-23.
[9] M. Cai, H. Xing, B. Tian, J. Xu, Z. Li, H. Zhu, K. Yang, P. Sun, Characteristics and antifatigue activity of graded polysaccharides from Ganoderma lucidum separated by cascade membrane technology, Carbohydr Polym 269 (2021) 118329.
[10] X. Chen, W. Sun, B. Xu, E. Wu, Y. Cui, K. Hao, G. Zhang, C. Zhou, Y. Xu, J. Li, H. Si, Polysaccharides From the Roots of Millettia Speciosa Champ Modulate Gut Health and Ameliorate Cyclophosphamide-Induced Intestinal Injury and Immunosuppression, Front Immunol 12 (2021) 766296.
[11] S. Shi, G. Wang, J. Liu, S. Liu, Q. Xu, X. Lan, J. Feng, J. Sun, W. Zhang, J. Wang, Gentiana straminea Maxim. polysaccharide decolored via high-throughput graphene-based column and its anti-inflammatory activity, Int J Biol Macromol 193(Pt B) (2021) 1727-1733.
[12] X. Wan, X. Li, D. Liu, X. Gao, Y. Chen, Z. Chen, C. Fu, L. Lin, B. Liu, C. Zhao, Physicochemical characterization and antioxidant effects of green microalga Chlorella pyrenoidosa polysaccharide by regulation of microRNAs and gut microbiota in Caenorhabditis elegans, Int J Biol Macromol 168 (2021) 152-162.
[13] Z.X. Wang, N. Li, J.W. Xu, Effects of Efficient Expression of Vitreoscilla Hemoglobin on Production, Monosaccharide Composition, and Antioxidant Activity of Exopolysaccharides in Ganoderma lucidum, Microorganisms 9(8) (2021).
[14] T. Xia, C.S. Liu, Y.N. Hu, Z.Y. Luo, F.L. Chen, L.X. Yuan, X.M. Tan, Coix seed polysaccharides alleviate type 2 diabetes mellitus via gut microbiota-derived short-chain fatty acids activation of IGF1/PI3K/AKT signaling, Food Res Int 150(Pt A) (2021) 110717.
[15] X. Zhang, C. Bi, H. Shi, X. Li, Structural studies of a mannoglucan from Cremastra appendiculata (Orchidaceae) by chemical and enzymatic methods, Carbohydr Polym 272 (2021) 118524.
[16] X. Zhang, Z. Liu, C. Zhong, Y. Pu, Z. Yang, Y. Bao, Structure characteristics and immunomodulatory activities of a polysaccharide RGRP-1b from radix ginseng Rubra, Int J Biol Macromol 189 (2021) 980-992.
[17] Y. Zhang, Y. Han, J. He, K. Ouyang, M. Zhao, L. Cai, Z. Zhao, W. Meng, L. Chen, W. Wang, Digestive properties and effects of Chimonanthus nitens Oliv polysaccharides on antioxidant effects in vitro and in immunocompromised mice, Int J Biol Macromol 185 (2021) 306-316.
[18] Y. Chen, Y. Ouyang, X. Chen, R. Chen, Q. Ruan, M.A. Farag, X. Chen, C. Zhao, Hypoglycaemic and anti-ageing activities of green alga Ulva lactuca polysaccharide via gut microbiota in ageing-associated diabetic mice, Int J Biol Macromol 212 (2022) 97-110.
[19] J. Fang, Y. Lin, H. Xie, M.A. Farag, S. Feng, J. Li, P. Shao, Dendrobium officinale leaf polysaccharides ameliorated hyperglycemia and promoted gut bacterial associated SCFAs to alleviate type 2 diabetes in adult mice, Food Chem X 13 (2022) 100207.
[20] X. Guan, Q. Wang, B. Lin, M. Sun, Q. Zheng, J. Huang, G. Lai, Structural characterization of a soluble polysaccharide SSPS1 from soy whey and its immunoregulatory activity in macrophages, Int J Biol Macromol 217 (2022) 131-141.
[21] N. Hu, Z. Gao, P. Cao, H. Song, J. Hu, Z. Qiu, C. Chang, G. Zheng, X. Shan, Y. Meng, Uniform and disperse selenium nanoparticles stabilized by inulin fructans from Codonopsis pilosula and their anti-hepatoma activities, Int J Biol Macromol 203 (2022) 105-115.
[22] H. Jiang, H. Zhu, G. Huo, S. Li, Y. Wu, F. Zhou, C. Hua, Q. Hu, Oudemansiella raphanipies Polysaccharides Improve Lipid Metabolism Disorders in Murine High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease, Nutrients 14(19) (2022).
[23] L. Li, W. Xu, Y. Luo, C. Lao, X. Tong, J. Du, B. Huang, D. Li, J. Chen, H. Ye, F. Cong, X. Guo, J. Li, Aloe polymeric acemannan inhibits the cytokine storm in mouse pneumonia models by modulating macrophage metabolism, Carbohydr Polym 297 (2022) 120032.
[24] Z. Ma, Q. Sun, L. Chang, J. Peng, M. Zhang, X. Ding, Q. Zhang, G. Liu, X. Liu, Y. Lan, A natural anti-obesity reagent derived from sea buckthorn polysaccharides: Structure characterization and anti-obesity evaluation in vivo, Food Chem 375 (2022) 131884.
[25] X. Li, S. Yang, S. Wang, Y. Shi, Y. Dai, X. Zhang, Y. Liu, Y. Guo, J. He, M. Xiu, Regulation and mechanism of Astragalus polysaccharide on ameliorating aging in Drosophila melanogaster, Int J Biol Macromol 234 (2023) 123632.
[26] K. Wu, Y. Li, Y. Lin, B. Xu, J. Yang, L. Mo, R. Huang, X. Zhang, Structural characterization and immunomodulatory activity of an exopolysaccharide from marine-derived Aspergillus versicolor SCAU141, Int J Biol Macromol 227 (2023) 329-339.